General Extended Mean Value Theorem. Suppose f(x) and its derivatives f'(x), f''(x), . . . , $f^{(n-1)}(x)$ of order one through n-1 are continuous on $a \le x \le b$, and $f^{(n)}(x)$ exists for a < x < b. If

$$F(x) = f(x) - f(a) - (x - a)f'(a)$$

$$- \frac{(x - a)^2 f''(a)}{2!} - \cdots$$

$$- \frac{(x - a)^{n-1} f^{(n-1)}(a)}{(n-1)!} - K(x - a)^n,$$

where K is chosen so that F(b) = 0, show that

(a)
$$F(a) = F(b) = 0$$
,

(b)
$$F'(a) = F''(a) = \cdots = F^{(n-1)}(a) = 0$$
,

(c) there exist numbers c₁, c₂, c₃, . . . , c_n such that

$$a < c_n < c_{n-1} < \cdots < c_2 < c_1 < b$$

and such that

$$F'(c_1) = 0 = F''(c_2)$$

= $F'''(c_3) = \cdots = F^{(n-1)}(c_{n-1})$
= $F^{(n)}(c_n)$.

(d) Hence, deduce that

$$K = \frac{f^{(n)}(c_n)}{n!}$$

for c_n as in (c); or, in other words, since F(b) = 0,

$$f(b) = f(a) + f'(a)(b - a)$$

$$+ \frac{f''(a)}{2!}(b - a)^{2} + \cdots$$

$$+ \frac{f^{(n-1)}(a)}{(n-1)!}(b - a)^{n-1}$$

$$+ \frac{f^{(n)}(c_{n})}{a!}(b - a)^{n}$$

for some c_n , $a < c_n < b$. [Amer. Math. Monthly, Vol. 60 (1953), p. 415, James Wolfe.]